Use of finite element models for estimating thermal performance of faᅢᄃade-integrated solar thermal collectors
نویسندگان
چکیده
Research on building-integrated solar thermal collectors is attracting increasingly more interest. Many efforts have been focused at the design level for obtaining specific building-orientated products, but there is a significant lack of standardised methods for evaluating how the efficiency of solar collectors changes when a wall is an integral part of the solar component itself. Generally speaking, experimental tests on integrated components are not easy to realise and are, in any case, expensive in terms of time and money. Physical and numerical methods can be utilised, but at the moment, there is no common approach. The present work addresses a method for the calculation of a building-integrated component performance curve by means of a finite element method model. The main idea is to exploit data measured for a simpler and non-integrated component, which are readily available, for validating and calibrating a more complex model in which the system is coupled with a building element. Simulation assumptions and outputs are designed to comply with the main standards utilised for defining solar collector performance curves. The proposed method proves that it may be a good way to assess the performance curves of buildingintegrated solar thermal collectors and that it is suitable for reducing test costs. The authors have also highlighted the measures that must be taken for the sample collector to better fit the BIST performance
منابع مشابه
Performance Study of a Solar Integrated Central Heating System of a Residential Building Using Trnsys- an Hourly Simulation Model (RESEARCH NOTE)
In this investigation, the performance of an existing heating system of a residential building incorporated with an array of solar thermal collectors was studied. For this purpose, transient systems simulation program model was assembled to estimate the hour-by-hour performance of the existing and the system equipped with the solar thermal collectors in terms of the provided space air condition...
متن کاملExperimental Investigation of the Thermal Performance of Vacuum Tube Solar Collectors (VTSC) Using Alumina Nanofluids
The enhancement of the thermal performance of Vacuum Tube Solar Collectors (VTSC) was studied by using alumina nanofluid as working fluid. VTSC is a simple and commonly utilized type of collector. This study established the heat transfer experimental model of all glass VTSCs used in a forced-circulation solar water heating system using alumina nanofluid as base fluid. Al2O3 (with an average par...
متن کاملApplication of Solar Thermal Collectors to Improve the Energy Performance of the Fresh Air HVAC Systems
In the preset study, the performance of a solar assisted heating, ventilation and air conditioning (HVAC) system in an operating theater building was studied. The yearly performances of the existing HVAC system and the system with the added solar collectors were simulated in terms of energy consumption and provided air conditions using a transient system simulation software (TRNSYS). In t...
متن کاملNumerical analysis of thermal-hydraulic properties of turbulent aerosol-carbon black nanofluid flow in corrugated solar collectors with double application
In this study the effects of corrugated absorber plate and using aerosol-carbon black nanofluid on heat transfer and turbulent flow in solar collectors with double application and air heating collectors, were numerically investigated. The two-dimensional continuity, momentum and energy equation were solved by finite volume and SIMPLE algorithm. In the present investigation all the simulations w...
متن کاملCost and performance analysis of an integrated solar combined cycle with two tanks for indirect thermal energy storage
In this paper, the annual and economic performance of an integrated solar combined cycle (ISCC) with indirect energy storage tanks is investigated. The study includes four scenarios, in which the combined cycle performance was studied exclusively in the first scenario. In the second scenario, the integrated solar combined cycle (ISCC) was examined, and the use of supplementary firing instead of...
متن کامل